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Abstract

The present study deals with the effect of laser radiation on the propagation phenomenon of a thermal wave in a very

thin film subjected to a symmetrical heating on both sides. Pulsating laser heating is modelled as an internal heat source

with various time characteristics. The Cattaneo heat flux law together with the energy conservation equation is solved

by a numerical technique based on explicit scheme, i.e., MacCormack�s predictor–corrector scheme. Results are

obtained for the time history of heat transfer behaviour before and after symmetrical collision of wave fronts from

two sides of a film. The study concludes (1) if the absorption coefficient of the continuously-operated- and pulsat-

ing-laser heat source increases, temperature overshoot causes in a very thin film within a very short period of time,

and (2) the overshoot and oscillation of thermal wave depend on the frequency of the heat source time characteristics.

This trend becomes minor in a thick film.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

When the elapsed time during a transient is extremely

short, the classical Fourier heat conduction equation

breaks down at low temperature near absolute zero or

at moderate temperature. That is, the thermal wave trav-

els in the medium with a finite speed of propagation

[1–4]. An increasing interest has arisen recently in the

use of heat sources such as lasers and microwaves, which

have found numerous applications related to material

processing (e.g. surface annealing, welding and drilling
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of metals, sintering of ceramics, scientific research and

medicine). Experimental and theoretical studies on these

applications are reported by numerous investigators

[5–7]. This is because when extremely short laser pulses

or high frequencies are concerned, it may give inaccurate

results. In particular as laser pulse duration approaches

the microscopic relaxation times among different energy

carries, the mechanism of radiation absorption becomes

important [8,9]. The present study is focused on thermal

propagation in a metal film subjected to a laser heat

source.

In order to account for a finite propagation in the

thermal field, a hyperbolic differential equation based

on a relaxation model for heat conduction was intro-

duced. Several authors have studied analytically the par-

abolic and hyperbolic models of heat conduction with

the laser heat source and with a convective boundary
ed.
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Fig. 1. Physical configuration and coordinate system.

Nomenclature

c speed of thermal wave (m/s)

c0 reference speed of thermal wave (m/s)

cp specific heat at constant pressure (J/kgK)

g strength of internal heat source (W/m3)

g0 reference capacity of internal heat source

Ir(1 � R)l (W/m3)

I(t) laser incident intensity (W/m2)

Ir arbitrary reference laser intensity (W/m2)

k thermal conductivity (W/Km)

k0 reference thermal conductivity (W/Km)

Q(g,n) dimensionless heat flux

q(x, t) heat flux (W/m2)

R surface reflectance

T(x, t) temperature (K)

T0 reference temperature (K)

Tw1 wall temperature (K)

t time (s)

x space variable (m)

x0 film thickness (m)

Greek symbols

a thermal diffusivity, k/(qcp) (m
2/s)

a0 reference thermal diffusivity (m2/s)

b dimensionless absorption coefficient, 2slc0
w0 constant coefficient related to the dimen-

sionless strength of internal heat source,
k0g0

ðTw1�T 0Þc20q2c2p

g dimensionless space variable

h(g,n) dimensionless temperature

n dimensionless time variable

/(n) dimensionless rate of energy absorbed in the

medium I(2sn)/Ir
l absorption coefficient

q density (kg/m3)

s relaxation time a/c2 (s)
D dimensionless duration of the laser pulse

x frequency of a periodic heat source

Subscript

n time level

Superscript

i spatial location
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condition [10–15]. Using both models, Kar et al. [16]

studied heat conduction due to shortpulse heating for

various boundary conditions. They reported that the

predicted temperature distribution is substantially af-

fected by the temperature dependent thermal properties.

Lewandowska [17] also dealt with the parabolic and

hyperbolic heat conduction in the one-dimensional,

semi-infinite body with the insulated boundary and dis-

cussed different time characteristics of the heat source

capacity. It is disclosed that (i) for small dimensionless

Bouguer number the temperature distribution in the

body results from the heat generation process, and (ii)

the significant difference between the hyperbolic and

parabolic solutions appears in only an edge of the body,

where the hyperbolic temperature is higher than the par-

abolic one. Size effects on non-equilibrium laser heating

of metal films were investigated by Qiu and Tien [18].

This paper deals with thermal wave behavior during

transient heat conduction in a film (solid plate) subjected

to a laser heat source with various time characteristics

from both side surfaces. Emphasis is placed on the effect

of the time characteristics of the laser heat source (con-

stant, pulsed and periodic) on thermal wave propaga-

tion. Numerical solutions are obtained by means of a

numerical technique based on MacCormack�s predic-

tor–corrector scheme to solve the non-Fourier, hyper-

bolic heat conduction equation [19].
2. Formation and numerical method

One-dimensional thermal propagation in a film with

thickness of x0 is analyzed, as shown in Fig. 1. At

t = 0, the temperature field within the solid is uniform

with a value T0. For t > 0, the wall surfaces at x = 0

and x0 are suddenly heated due to the laser heat source.

Non-equilibrium convection and radiation are assumed

to be negligible. Under these conditions and assump-

tions, the Fourier equation [12] and the energy equation

with internal heat sources can be represented as

s
oq
ot

þ qþ k
oT
ox

¼ 0 ð1Þ

and
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qcp
oT
ot

þ oq
ox

� g ¼ 0 ð2Þ

respectively.

For a metal (absorption coefficient l of the order of

107–108m�1) which absorbs laser energy internally,

many researchers (for examples, Vick and Ozisik [10];

Ozisik and Vick [20]; Tang and Araki [21]) reported that

almost all energy is absorbed within a depth of the order

of 0.1lm which can be treated as a skin effect. Thus, the

model considers the laser radiation as a heat source,

which is x-independent and non-zero only within a layer

of the body or even as a surface heat flux. Based on this

idea, the energy sources term in Eq. (2), for a material

that absorbs laser energy internally, is modeled by

Blackwell [11] and Zubair and Aslam [12] as

gðx; tÞ ¼ IðtÞð1� RÞl expð�lxÞ: ð3Þ

Here I(t) is the laser incident intensity and R is the sur-

face reflectance of the body. Note that this model as-

sumes no spatial variations of I(t) in the plane

perpendicular to the laser beam and no heat transport

in the direction perpendicular to the beam.

The following dimensionless quantities, i.e., dimen-

sionless temperature, dimensionless heat flux, and

dimensionless time and space variables are introduced as

h n; gð Þ ¼ T � T 0

T w1 � T 0

ð4aÞ

Q n; gð Þ ¼ a0q
T w1 � T 0ð Þk0c0

: ð4bÞ

n ¼ c20t
2a0

ð4cÞ

g ¼ c0x
2a0

¼ x
2sc0

: ð4dÞ

Eqs. (1) and (2) are expressed in terms of the above

dimensionless variables as

oQ
on

þ oh
og

þ 2Q ¼ 0 ð5Þ

and

oQ
og

þ oh
on

� 2w0/ðnÞ expð�bgÞ ¼ 0: ð6Þ

Initial and boundary conditions are represented, as

h ¼ 0; Q ¼ 0 at n ¼ 0; 0 < g <
c0x0
2a0

oh
og

¼ 0; Q ¼ 0 at n > 0; g ¼ 0 and
c0x0
2a0

ð7Þ

Note that the boundary condition of Q at n > 0 is de-

rived from Eqs. (5) and (6) and a minimum distance

from both side walls is employed as g because of the

symmetrical heating.
Glass et al. [22,23] reported that MacCormack�s
method [24], which is a second-order accurate explicit

scheme, can handle these moving discontinuities quite

well and is valid for the hyperbolic heat conduction

problems. Since the hyperbolic problems considered

here have step discontinuities at the thermal wave front,

MacCormack�s predictor–corrector scheme is used in

the present study. When MacCormack�s method is ap-

plied to Eqs. (5) and (6), the following finite difference

formulation results:

Predictor:

hnþ1
i ¼ hn

i �
Dn
Dg

ðQn
iþ1 � Qn

i Þ þ Dn½�2w0/ðDnnÞ

� expð�2bDgiÞ�: ð8Þ

Qnþ1
i ¼ Qn

i �
Dn
Dg

ðhn
iþ1 � hn

i Þ � 2DnQn
i ð9Þ

Corrector:

hnþ1
i ¼ 1

2
hn
i þ hnþ1

i � Dn
Dg

Qnþ1
i � Qnþ1

i�1

� ��

þDn �2w0/ ðnþ 1ÞDnð Þ expð�bDgiÞ½ �
�

ð10Þ

Qnþ1
i ¼ 1

2
Qn

i þ Qnþ1
i � Dn

Dg
hnþ1
i � hnþ1

i�1

� �
� 2DnQnþ1

i

� �
;

ð11Þ

where the subscript i denotes the grid points in the space

domain, superscript n denotes the time level, and Dg and

Dn are the space and time steps, respectively. The terms

with overbars, i.e., Qnþ1
i ; hnþ1

i , etc. are a temporary pre-

dicted value at the time level n + 1.

Throughout numerical calculations, the number of

grids is properly selected between 1000 and 5000 to ob-

tain a grid-independent solution, resulting in no appreci-

able difference between the numerical results with

different grid spacing. The ranges of the parameters are

non-dimensional plate thickness c0x0/a = 1.0 and 10.0,

constant coefficient related to the dimensionless capacity

of internal heat source w0 = 1, dimensionless rate of en-

ergy absorbed in the medium, /(n) = 1, /(n) =
(1 + sin(xn))/2, and /(n) = 100(exp(�0.4n) � exp(�
0.41n)) � 0.3134(n/D)2, and dimensionless absorption

coefficients b = 1 and 10. Note that for a pulsating laser

source, the same model proposed by Lewandowska [17]

is employed here as follows.

/ðnÞ ¼ 100ðexpð�0:4nÞ � expð�0:41nÞÞ � 0:3134ðn=DÞ2

for n < D

/ðnÞ ¼ 0 for n P D ð12Þ

In order to verify the numerical method and to deter-

mine the reliability of the computer program, numerical

predictions are compared with analytical results



540 S. Torii, W.-J. Yang / International Journal of Heat and Mass Transfer 48 (2005) 537–544
obtained by Lewandowska [17], who investigates the

thermal waves propagating in the one-dimensional

semi-infinite body with the insulated boundary. Numer-

ical results are obtained for metals putting /(n) = 1 and

w0 = 1. Here, typical values of the model parameters for

many metals are employed as: the thermal diffusivity a is

approximately 10�5m2/s during the initial stages of laser

irradiation, the relaxation time s is the order of 10�11 s

[25], the thermal wave speed C is the order of 103m/s

using the correlation a = C2s, the absorption coefficient

l is typically the order of 107–108m�1 and the surface

reflectance of the typical metal R is about 0.9 [26].

Fig. 2, for b = 1, depicts the time history of the

dimensionless temperature distribution at different loca-

tions of the body. The effect of absorption coefficient of

material, b, on the temperature distribution in a plate is

illustrated in Fig. 3 for n = 1. For comparison, analytical
Fig. 2. A comparison of analytical results and theoretical data

[17] for temperature distributions in a film for /(s) = 1, w0 = 1

and b = 1.

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

ξ=1

ξ=3

ξ=6

η

θ

Prediction

Theoretical result  [17]

Fig. 3. A comparison of analytical results and theoretical data

[17] for temperature distributions in a film for /(s) = 1, w0 = 1

and s = 1.
result of Lewandowska [17] is superimposed in the figure

with solid lines. It is observed in Figs. 2 and 3 that the

heat production is concentrated at the edge of the body,

as mentioned previously. Both figures show an excellent

agreement between both the present and existing solu-

tions. The validity of the computer program and the ver-

ification of the numerical method are born out through

the above comparisons.
3. Numerical results and discussion

3.1. Continuous operated laser source

Fig. 4(a) and (b), for /(n) = 1, w0 = 1, and c0x0/

a = 1.0, depicts the time-histories of the temperature dis-

tribution, h, in a film for b = 1 and 10, respectively. Since

the space region of the heat source capacity increases for

larger b, an increase in the film temperature yields over

the whole film, as seen in Fig. 4(a). Note that at n fixed,

the film temperature for b = 1 is higher than that for

b = 10. It is observed in Fig. 4(b) that as time progresses,
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Fig. 4. Instantaneous dimensionless temperature distributions

in the film for /(n) = 1, w0 = 1 and c0x0/a = 1.0.
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the film temperature for b = 10 gradually increases be-

cause almost all energy is absorbed in the vicinity of

both side walls and after n = 0.6, the film temperature

substantially induces in the centre region of the film, that

is the temperature overshoot occurs. This trend becomes

minor in a thick film, as seen in Fig. 5. Fig. 5 illustrates

the time-histories of the temperature distribution, h, in a

film for c0x0/a = 10.0. Notice that /(n) and w0 are the

same as the corresponding values in Fig. 4. The film tem-

perature gradually increases in the absence of tempera-

ture overshoot even for different b. The temperature

profiles behave like diffusion domination and are in

accordance with theoretical results predicted by the clas-

sical heat-conduction theory.

Next is to investigate the effect of time-dependence of

laser heat source on the time history of the film temper-

ature, for w0 = 1 and b = 10.0. Fig. 6 illustrates the time-

history of the temperature distribution in the film with

c0x0/a = 1, in which the periodic laser source is modeled
Fig. 5. Instantaneous dimensionless temperature distributions

in the film for /(n) = 1, w0 = 1 and c0x0/a = 10.0.
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Fig. 6. Instantaneous dimensionless temperature distributions

in the film for /(n) = 1, w0 = (1 + sin(xn))/2 and c0x0/a = 1.0.
as / (n) = (1 + sinxn)/2. This phenomenon implies that

the heat source is periodically oscillated in the vicinity

of both side-walls of the film. (a) and (b) of the figure de-

pict numerical results for x = 1 and 10, respectively. It is

observed in Fig. 6(a) that although the propagation

process of thermal waves in a film, for x = 1, is similar

to the numerical result for constant laser source source,

as seen in Fig. 4(b), the temperature overshoot disap-

pears. By contrast, Fig. 6(b) shows that when the fre-

quency of the periodic laser heat source becomes

larger, a substantial change in wave propagation is

caused through time. One observes that (i) when wave-

fronts from both sides arrive at the center of the film,

the temperature is substantially increased and; (ii) the

temperature overshoot takes place; and (iii) thought

the film temperatures at both-side walls are changed

with time, the inner film temperature is increased over

the whole region of the film as time progresses. The ef-

fect of the time-dependence of laser heat source becomes

minor for the thick film, as seen in Fig. 7, which illus-

trates the timewise variation of the film temperature pro-

file with c0x0/a = 10.0. Here the values of w0, /(n), b



θ

η

ξ=9.50

ξ=7.24

ξ=4.79

ξ=2.50

ξ=0.10
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 1 2 3 4 5 6 7 8 9 10

Fig. 7. Instantaneous dimensionless temperature distributions

in the film for /(n) = 1, w0 = (1 + sin(10n))/2, b = 10 and c0x0/

a = 10.0.

542 S. Torii, W.-J. Yang / International Journal of Heat and Mass Transfer 48 (2005) 537–544
and x are the same as these of Fig. 6(b). One observes

that as time progresses, the film temperature increases

gradually, whose behavior is similar to that shown in
θ

η

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ=0.0

ξ=0.2

ξ=0.4
ξ=0.6 ξ=0.8 ξ=1.0 ξ=2.0

θ

η

ξ=0.2
ξ=0.4

ξ=0.6

ξ=0.8

ξ=1.0

ξ=2.0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) ∆=0.5

(b) ∆=5

Fig. 8. Instantaneous dimensionless temperature distributions

in the film heated with a pulsating laser source for c0x0/a = 1.0.
Fig. 5(b), thought the oscillate temperature profile yields

near the sidewalls because of the periodic laser heat

source. Note that for the small value of b, i.e., b = 1,

the calculated temperature distribution is similar to that

for b = 10 (not shown), but the absolute value of the film

temperature is different for b = 1 and 10. It is found that

(i) the effect of the frequency of a periodic heat source x
on the temperature distribution become considerably

greater in the very thin film, while its oscillation is af-

fected only near the wall of the thick film.
3.2. Pulsed laser source

Fig. 8(a) and (b), for c0x0/a = 1.0, depict the time-his-

tories of the temperature distribution h in a very thin

film for D = 0.5 and 5, respectively. Since the space re-

gion of the heat source capacity increases for lower b
as mentioned above, an increase in the film temperature

yields over the film. The film temperature, for D = 5.0, is

gradually increased over the whole cross-section of the
θ

η

0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8 9 10

ξ=0.1

ξ=2.0

ξ=4.0

ξ=6.0

ξ=8.0

θ

η
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

ξ=0.1 ξ=2.0
ξ=4.0

ξ=6.0

ξ=8.0

ξ=20.0

(a) ∆=5

(b) ∆=2

Fig. 9. Instantaneous dimensionless temperature distributions

in the film heated with a pulsating laser source for c0x0/a = 10.0.
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film as the time progresses (Fig. 8(b)). This is because the

film is continuously heated by the laser source up to

n = 5.0. In contrast, when the pulsating heat is carried

out, that is when no heating is imposed in the film after

n = 0.5, the substantial increase in the file temperature

appears as seen in Fig. 8(a). In other words, after

n = 0.6 the file temperature diminishes in the vicinity

of the file surface, while the corresponding value sub-

stantially induces in the centre region of the film, that

is the temperature overshoot occurs. This is because

the heat propagates in the file. This trend becomes minor

in a thick film, as seen in Fig. 9. Fig. 9 illustrates the

time-histories of the temperature distribution, h, in a

film for c0x0/a = 10.0. (a) and (b) of Fig. 9 correspond

to numerical results for D = 5 and 2, respectively. It is

observed that after the laser heating up to n = 5, the sur-

face wall temperature diminishes, while the correspond-

ing vale in the centre region of the film increases, as

shown in Fig. 9(a). A similar thermal behavior is ob-

served in the case of D = 2, as seen in Fig. 9(b). Note that

the wall temperatures on both sides are not substantially

amplified because of the short time heating of the

laser. The temperature profiles for thick film behave like

diffusion domination and are in accordance with theo-

retical results predicted by the classical heat-conduction

theory.
4. Summary

A numerical study is performed on the effect of laser

heating on the propagation phenomenon of a thermal

wave in a very thin film subjected to a symmetrical heat

source on both sides. The non-Fourier, hyperbolic heat

conduction equation, which considers the laser radiation

as a heat source, is solved using a numerical technique

based on MacCormack�s predictor–corrector scheme.

Results have been obtained for the propagation process,

magnitude and shape of thermal waves.

1. If a film is heated by the continuous-operated or

pulsed lasers, temperature overshoot takes place in

the films of smaller values of x0/2sc0 within a very

short period of time. The effect of the laser heat

source on the temperature distribution in the film

becomes larger in the thin film. In other words, if

the absorption coefficient, b, of the laser increases,

the temperature is more dependent on the laser heat

source in a thin film than in a thick film.

2. Overshoot and oscillation of thermal wave depend on

the frequency x of the heat source time

characteristics.

3. As the dimensionless duration of the pulsed heat

source D becomes larger, the temperature in the film
is gradually increased over the whole cross-section of

the film as the time progresses.
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